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    11.1   Introduction 

 Terpenoids represent the largest and most diverse 
class among plant secondary metabolites. They 
are involved in various basic plant processes, 
such as photosynthesis, respiration, growth, 
development, and adaptation to environmental 
conditions (Gershenzon and Kreis  1999 ; 
Rodríguez-Concepción and Boronat  2002  ) . 
Volatile terpenoids, monoterpenes (C10), sesqui-
terpenes (C15), and some diterpenes (C20) play 
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important roles in direct and indirect plant 
defense against herbivores and pathogens, as well 
as in reproduction by attracting pollinators 
and seed disseminators (Dudareva et al.  2006  ) . 
Biosynthesis of terpenoids in plants occurs in dif-
ferent subcellular compartments including the 
cytosol, plastids, and mitochondria, which is 
consistent with their various functions. 

 All terpenoids originate from the universal 
 fi ve-carbon precursors, isopentenyl diphosphate 
(IPP) and its allylic isomer dimethylallyl diphos-
phate (DMAPP), which are derived from two 
alternative biosynthetic pathways localized in 
different subcellular compartments. The classical 
mevalonic acid (MVA) pathway, which until 
recently has been believed to operate in the cyto-
sol, gives rise to IPP from three molecules of 
acetyl-CoA (McCaskill and Croteau  1995 ; 
Newman and Chappell  1999  ) . In contrast, the 
methylerythritol-phosphate (MEP) pathway takes 
place in plastids and produces IPP from pyruvate 
and glyceraldehyde 3-phosphate (cf. Eisenreich 
et al.  1998 ; Lichtenthaler  1999 ; Rohmer  1999 ; 
and elsewhere in this volume). Although the sub-
cellular compartmentalization allows the MVA 
and MEP pathways to operate independently, met-
abolic “crosstalk” between them has been reported 
(Schuhr et al.  2003  ) , particularly in the direction 
from plastids to the cytosol (Hemmerlin et al. 
 2003a ; Laule et al.  2003 ; Dudareva et al.  2005  ) . 

 In both subcellular compartments, IPP and 
DMAPP are subsequently utilized by prenyl-
transferases to produce prenyl diphosphates. In 
the cytosol, farnesyl diphosphate synthase (FPPS) 
catalyzes the condensation of one DMAPP 
molecule and two IPP molecules to produce FPP 
(C15), the precursor of sesquiterpenes (McGarvey 
and Croteau  1995  ) . In plastids, a head-to-tail 
condensation of one IPP and one DMAPP mole-
cule catalyzed by geranyl diphosphate synthase 
(GPPS) forms GPP (C10), the universal precur-
sor of monoterpenes (cf. Ogura and Koyama 
 1998 ; Poulter and Rilling  1981  ) , whereas con-
densation of one DMAPP molecule with three 
IPP molecules by the action of geranylgeranyl 
diphosphate synthase (GGPPS) yields GGPP 
(C20), the precursor of diterpenes (Koyama and 
Ogura  1999  ) . Upon the formation of the prenyl 
diphosphate precursors GPP, FPP, and GGPP, a 

wide range of structurally diverse cyclic and 
acyclic monoterpenes, sesquiterpenes, and diter-
penes are generated through the action of a large 
family of terpene synthases/cyclases (TPSs) 
(Cane  1999 ; Wise and Croteau  1999 ; and litera-
ture cited therein). 

 It has generally been accepted that GPP and 
monoterpenes are synthesized in plastids, whereas 
FPP and sesquiterpenes are produced in the cyto-
sol. Here we will discuss how the subcellular 
compartmentalization contributes to the forma-
tion of terpenoid diversity in plants in light of 
recent reports on bifunctional terpene synthases 
capable of producing both mono- and sesquiter-
penes as well as on metabolic engineering of the 
terpenoid pro fi le by switching the subcellular 
localization of terpene synthases.  

    11.2   IPP and DMAPP Are Formed 
in Various Subcellular 
Compartments 

    11.2.1   The Mevalonic Acid Pathway 

 The MVA pathway consists of six enzymatic 
steps, which lead to the formation of IPP 
(Fig.  11.1 ) and provide the precursors for 
sesquiterpenes, sterols, and ubiquinone in plants 
(Newman and Chappell  1999 ; Disch et al.  1998 ). 
Generally, the MVA pathway in plants (in con-
trast to mammals, see Kovacs et al.  2002,   2007  )  
is considered to operate in the cytosol; however, 
only fragmented experimental data existed until 
recently regarding the subcellular compartmen-
talization of the enzymes involved. The initial 
step of the pathway, the condensation of two 
molecules of acetyl-CoA, is catalyzed by ace-
toacetyl-CoA thiolase (AACT). The  fi rst plant 
AACT was cloned from radish, by functional 
complementation of a yeast mutation (Vollack 
and Bach  1996  ) . Biochemical characterization of 
two  Arabidopsis  homologs, AACT1 and AACT2, 
and the analysis of T-DNA insertion mutants for 
both genes revealed that only AACT2 is involved 
in the MVA pathway, while the metabolic role of 
AACT1 still remains to be determined (Jin and 
Nikolau  2007 ; Ahumada et al.  2008  ) . Transient 
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  Fig. 11.1    Compartmentalization of metabolic pathways 
involved in the terpenoid biosynthesis in plants. Plastids 
and mitochondria are highlighted in green and yellow, 
respectively. Enzymes of the MVA pathway localized in 
peroxisomes and at ER/ER-derived membranes are 
labeled in blue and orange, respectively. The enzymatic 
steps are indicated by  arrows  and the enzymes involved 
are depicted as  circles  with the abbreviation of their 
names. Abbreviations:  AACT  acetoacetyl-CoA thiolase, 
 CMK  4-(Cytidine 5 ¢ -diphospho)-2- C -methyl- d -erythritol 
kinase,  DMAPP  dimethylallyl diphosphate,  DXP  1-deoxy-
 d -xylulose 5-phosphate,  DXR  1-deoxy- d -xylulose 5-phos-
phate reductoisomerase,  DXS  1-deoxy- d -xylulose 
5-phosphate synthase,  FPP  farnesyl diphosphate,  FPPS  
farnesyl diphosphate synthase,  GA-3P   d -glyceraldehyde 
3-phosphate,  GGPP  geranylgeranyl diphosphate,  GGPPS  

geranylgeranyl diphosphate synthase,  GPP  geranyl 
diphosphate,  GPPS  geranyl diphosphate synthase,  HDR  
( E )-4-hydroxy-3-methylbut-2-enyl diphosphate reductase, 
 HDS  ( E )-4-hydroxy-3-methylbut-2-enyl diphosphate 
synthase,  HMG-CoA  3-hydroxy-3-methylglutaryl-CoA, 
 HMGR  3-hydroxy-3-methylglutaryl-CoA reductase, 
 HMGS  3-hydroxy-3-methylglutaryl-CoA synthase,  IDI  
isopentenyl diphosphate isomerase,  IPP  isopentenyl 
diphosphate,  MCT  2- C -methyl- d -erythritol 4-phosphate 
cytidylyltransferase,  MDS  2- C -methyl- d -erythritol 
2,4-cyclodiphosphate synthase,  MEP  2- C -methyl- d -
erythritol 4-phosphate,  MK  mevalonate kinase,  MVA  
mevalonate,  MVD  mevalonate diphosphate decarboxy-
lase,  PMK  phosphomevalonate kinase,  TPS  terpene syn-
thases (including monoterpene synthases, sesquiterpene 
synthases, and bifunctional terpene synthases)       
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expression of AACT1 and AACT2 fused in frame 
to the C-terminus of a green  fl uorescent protein 
(GFP) showed that  Arabidopsis  AACT2 is local-
ized in the cytosol, whereas AACT1 is located in 
the peroxisomes (Carrie et al.  2007 ; Ahumada 
et al.  2008  ) . A peroxisomal/glyoxysomal local-
ization suggests the potential involvement of 
AACT1 in fatty acid degradation (Hartmann 
et al., this volume). However, recent proteomic 
analyses identi fi ed AACT2 in  Arabidopsis  leaf 
peroxisomes (Reumann et al.  2007 ,  2009  ) , which 
could be due to the existence of a yet unidenti fi ed 
splicing variant of AACT2 being targeted to this 
organelle. The second step of the MVA pathway 
is catalyzed by HMG-CoA synthase (HMGS) 
and includes the condensation of one molecule 
of acetyl-CoA with acetoacetyl-CoA to form 
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). 
Subcellular localization of HMGS has been 
studied only in  Brassica juncea , which contains 
four HMGS isoforms with 97% amino acid 
identity (Nagegowda et al.  2005  ) . Despite the 
presence of putative peroxisome targeting PTS2-
like signals in all  Brassica juncea  HMGS isoforms, 
GFP localization studies showed that at least 
BjHMGS1 is a cytosolic enzyme (Nagegowda 
et al.  2005  ) .  

 In the next step, 3-hydroxy-3-methylglutaryl-
CoA reductase (HMGR) catalyzes the formation 
of mevalonic acid from 3-hydroxy-3-methylglu-
taryl-CoA, which is considered to represent the 
rate-limiting step in the MVA pathway leading 
to phytosterols (cf. Bach  1986 ; Chappell et al. 
 1995  ) . Plant HMGRs have two hydrophobic 
transmembrane regions at their N-terminus, 
while the highly conserved catalytic domain is 
exposed to the cytosol (Campos and Boronat 
 1995  ) . Earlier in vitro studies using isolated 
microsomal membranes suggested that 
 Arabidopsis  and tomato HMGRs are capable of 
integrating into the endoplasmic reticulum (ER) 
membrane (Campos and Boronat  1995 ; Denbow 
et al.  1996  ) . Heterologous expression of two iso-
forms of radish HMGR in a yeast  hmgr   −  mutant 
led to microsome-bound enzyme (Vollack et al. 
 1994  ) . However, more recent extensive investiga-
tion of subcellular localization of HMGR in 
 Arabidopsis  revealed its dual localization: in the 

ER where it is synthesized and inserted into the 
membrane as well as within spherical vesicular 
structures derived from subdomains of the ER 
and located in the cytosol and the central vacuole 
(Leivar et al.  2005  ) . Membrane domains of two 
tobacco HMGR isozymes fused to GFP were also 
targeted differentially: The domain belonging to 
one HMGR isoform was targeted to ER, while 
that of the second isoform was found in globular 
structures and seemed to be directed by the actin 
skeleton (Merret et al.  2007  ) . 

 The downstream steps from mevalonate to IPP 
involve two phosphorylation reactions and a sin-
gle decarboxylation reaction that are catalyzed 
by mevalonate kinase (MK), phosphomevalonate 
kinase (PMK), and mevalonate diphosphate 
decarboxylase (MVD), respectively. While these 
enzymes are well studied in other eukaryotic 
systems (Kovacs et al.  2007  ) , very little is known 
about their subcellular localization in plants. 
Recently, cDNAs encoding these three MVA 
pathway enzymes were cloned from  Catharanthus 
roseus , and their activities were con fi rmed by 
functional complementation of yeast  erg12 ,  erg8 , 
and  mvd1  mutants defective in MK, PMK, and 
MVD, respectively (Simkin et al.  2011  ) . Since 
these  C. roseus  enzymes and their respective 
 Arabidopsis  homologs contain N-terminal PTS2 
consensus or PTS2-related sequences, their sub-
cellular localization was analyzed by transient 
expression of fusion constructs with yellow 
 fl uorescent protein (YFP). While the MK-YFP 
was exclusively localized in the cytosol, the 
PMK-YFP and MVD-YFP were co-localized to a 
large extent with a peroxisomal marker and only 
a small portion remained in the cytosol (Simkin 
et al.  2011  ) . These results suggest that in plants 
PMK and MVD are potentially peroxisomal 
enzymes; however, additional analyses using dif-
ferent techniques will be necessary to further 
con fi rm this subcellular localization.  

    11.2.2   The MEP Pathway 

 The mevalonate-independent pathway known as 
the MEP pathway involves seven enzymes to 
form IPP and DMAPP from pyruvate and 
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 d -glyceraldehyde 3-phosphate and provides the 
precursors for monoterpenes, diterpenes, carote-
noids, tocopherols, and the prenyl moiety of 
chlorophyll (Fig.  11.1 ). In plants, the MEP path-
way has been fully elucidated using a combina-
tion of biochemical and genomic approaches (see 
Rodríguez-Concepción and Boronat  2002 ; 
Rodríguez-Concepción et al., this volume). The 
following uni fi ed nomenclature has been 
proposed recently for the MEP pathway enzymes 
(Phillips et al.  2008b  ) : 1-deoxy -d- xylulose 
5-phosphate synthase (DXS), 1-deoxy -d-
 xylulose 5-phosphate reductoisomerase 
(DXR), 2- C -methyl -d- erythritol 4-phosphate 
cytidylyltransferase (MCT), 4-(Cytidine 
5 ¢ -diphospho)-2- C -methyl -d- erythritol kinase 
(CMK), 2- C -methyl -d- erythritol 2,4-cyclo-
diphosphate synthase (MDS), ( E )-4-hydroxy-3-
methylbut-2-enyl diphosphate synthase (HDS), 
and ( E )-4-hydroxy-3-methylbut-2-enyl diphos-
phate reductase (HDR). In contrast to questions 
concerning subcellular localization of enzymes 
involved in the MVA pathway, all enzymes of the 
plant MEP pathway are known to possess transit 
peptides for plastid targeting and their plastidic 
localization has been demonstrated experimen-
tally in numerous reports (Bouvier et al.  2000 ; 
Carretero-Paulet et al.  2002 ; Querol et al.  2002 ; 
Hsieh and Goodman  2005 ; Hsieh et al.  2008  ) .  

    11.2.3   Isopentenyl Diphosphate 
Isomerases 

 While the cytosolic MVA pathway produces IPP 
and requires its subsequent isomerization to 
DMAPP, the plastidic MEP pathway results in 
the synthesis of both IPP and DMAPP. However, 
HDR, catalyzing the last step in the MEP path-
way and responsible for the so-called pathway 
“branching” (Hoef fl er et al.  2002 ; Tritsch et al. 
 2010  ) , produces IPP and DMAPP in a ratio of 
approximately 6:1 (Rohdich et al.  2003 ; 
Eisenreich et al.  2004  ) , suggesting that isomer-
ization of IPP is also required in plastids to 
optimize the substrate formation for the subse-
quent steps. Thus, both cytosolic and plastidic 
formation of terpenoid compounds relies on iso-

pentenyl diphosphate isomerase (IDI) activity 
(Fig.  11.1 ). IDI is a divalent metal ion-requiring 
enzyme interconverting IPP and DMAPP found 
in all living organisms (cf. Gershenzon and Kreis 
 1999  ) . The  Arabidopsis  genome contains two 
genes,  IDI1  and  IDI2  (Campbell et al.  1997  ) , 
both encoding proteins with N-terminal sequences 
that were shown to target a fused GFP to the plas-
tids in the case of IDI1 and to the mitochondria in 
the case of IDI2 (Okada et al.  2008 ; Phillips et al. 
 2008a ; Sapir-Mir et al.  2008  ) . While these IDIs 
provide DMAPP for plastid- and mitochondria-
derived isoprenoids (Fig.  11.1 ), it has remained 
unclear until recently how the MVA-derived 
cytosolic IPP undergoes isomerization to 
DMAPP. Remarkably, shorter transcripts for both 
 Arabidopsis IDI  genes have been identi fi ed that 
code for IPP isomerase proteins lacking the 
N-terminal extensions (Okada et al.  2008 ; Phillips 
et al.  2008a  ) . Both short versions of IDIs were 
shown to be localized to peroxisomes, suggesting 
that this particular step downstream of the MVA 
pathway takes place in this organelle (Sapir-Mir 
et al.  2008  ) . However, more studies in different 
plant systems are needed to con fi rm this.   

    11.3   Prenyl Diphosphate Synthases/
Prenyltransferases Function 
in Different Subcellular 
Compartments 

 The steps following the synthesis of the basic iso-
prene units IPP and DMAPP involve head-to-tail 
condensation of DMAPP with one or more IPP 
residues, catalyzed by short-chain prenyl diphos-
phate synthases/prenyltransferases, leading to the 
formation of the prenyl diphosphate precursors 
GPP, FPP, and GGPP (Fig.  11.1 ) for the various 
terpenoid families (Koyama and Ogura  1999 ; 
Liang et al.  2002  ) . 

    11.3.1   Geranyl Diphosphate 
Synthase 

 A head-to-tail condensation of one molecule of 
IPP and DMAPP in a reaction catalyzed by gera-
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nyl diphosphate synthase (GPPS) leads to the 
formation of GPP, the precursor of monoterpenes 
(Poulter and Rilling  1981 ; Ogura and Koyama 
 1998  ) . GPPSs were isolated from a diverse 
range of plant species and found to exist in two 
fundamentally different dimeric structures. 
Heterodimeric GPPSs were found in peppermint 
( Mentha piperita ), snapdragon ( Antirrhinum 
majus ), Clarkia ( Clarkia breweri ), and hop 
( Humulus lupulus ) (Burke et al.  1999 ; Tholl et al. 
 2004 ; Wang and Dixon  2009  ) , while in grand  fi r 
( Abies grandis ), Norway spruce ( Picea abies ), 
and the orchid  Phalaenopsis bellina  (Burke and 
Croteau  2002a ; Schmidt and Gershenzon  2008 ; 
Schmidt et al.  2010 ; Hsiao et al.  2008  )  GPPS is a 
homodimeric enzyme. 

 In the heterodimeric GPPS, a small subunit 
alone is catalytically inactive, while the large 
subunit alone could be inactive as well, as was 
found in peppermint (Burke et al.  1999  ) , or repre-
sent a functional geranylgeranyl diphosphate 
synthase (GGPPS) on its own, as was shown in 
snapdragon and hop (Tholl et al.  2004 ; Wang and 
Dixon  2009  ) . Only the formation of a heterodi-
mer between these two subunits leads to an active 
enzyme producing GPP. A prenyltransferase 
from  Arabidopsis thaliana  as well as its tomato 
homolog were originally proposed to represent 
homodimeric GPPSs (Bouvier et al.  2000 ; 
van Schie et al.  2007a  ) . However, further detailed 
characterization of this  Arabidopsis  enzyme 
revealed that it rather is a polyprenyl pyrophos-
phate synthase (AtPPPS) catalyzing the forma-
tion of C 

25
  to C 

45
  medium-/long-chain products 

(Hsieh et al.  2011  ) . Likewise, two AtPPPS 
homologs from  P. abies  and  Quercus robur  were 
shown to catalyze the synthesis of larger prenyl 
diphosphate products (Schmidt and Gershenzon 
 2008  ) . Remarkably, a new subtype of GPPS small 
subunit (SSU-II) was identi fi ed recently in 
 Arabidopsis,  which is capable of interacting with 
endogenous GGPPS, and the resulting heterodi-
mer catalyzes the synthesis of GPP (Wang and 
Dixon  2009  ) . Biochemical studies also showed 
that GPPS small subunits can interact with 
GGPPS from phylogenetically distant plant 
species, thus changing their GGPPS activity to 
ef fi cient GPP production  in vitro  (Burke 

and Croteau  2002b ; Tholl et al.  2004 ; Wang and 
Dixon  2009  ) . The formation of such chimeric 
enzyme  in planta  was recently demonstrated by 
overexpression of snapdragon small subunit of 
GPPS in tobacco plants ( Nicotiana tabacum ) 
(Orlova et al.  2009  ) . The total GPPS activity and 
monoterpene emission from leaves and  fl owers 
was increased in these transgenic plants, indicat-
ing the formation of functional heterodimers with 
the endogenous large subunit partners. The for-
mation of chimeric GPPS in transgenic plants led 
to leaf chlorosis, increased light sensitivity, and 
dwar fi sm, most likely due to a diminished syn-
thesis of geranylgeranyl diphosphate (GGPP) 
needed for formation of photosynthetic pigments 
and gibberellic acid (Orlova et al.  2009  ) . The 
observed decrease in sesquiterpene emission sug-
gested that an increase in  fl ux toward GPP forma-
tion in plastids reduced the IPP pool and its 
transport to the cytosol (Orlova et al.  2009  ) . 

 The GPPS subunits are known to contain tran-
sit peptides required for their plastid targeting, 
and numerous reports support their plastidic 
localization (Fig.  11.1 ). The  fi rst evidence came 
from biochemical studies in  Vitis vinifera  which 
demonstrated the presence of GPPS activity in 
isolated intact plastids after tryptic digestion 
(Soler et al.  1992  ) . Thereafter, an in situ localiza-
tion study using antibodies generated against 
GPPS con fi rmed plastidic localization of GPPS 
in  Marchantia polymorpha  (Suire et al.  2000  ) . 
Moreover, immunogold localization studies using 
antibodies generated against the small subunit of 
GPPS showed that it is localized exclusively 
within the leucoplasts of epidermal cells of snap-
dragon petals (Tholl et al.  2004  ) . Transient 
expression of the large (LSU) and small subunits 
(SSU) of hop GPPS fused in frame to the 
N-terminus of GFP demonstrated that LSU is 
plastid localized, whereas the SSU-GFP fusion 
protein aggregated around the plastids (Wang and 
Dixon  2009  ) . In contrast to all other character-
ized plant GPPS, a cytosolic localization was 
demonstrated for GPPS in  Lithospermum eryth-
rorhizon  cell cultures, using cell fractionation, 
marker enzyme assays, and immunoblotting with 
antibodies against GPPS (Sommer et al.  1995  ) . 
These results were in agreement with in vivo 
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feeding experiments with  13 C-labeled glucose 
and the MVA pathway inhibitor mevinolin 
showing that the GPP-derived hemiterpenoid 
shikonin is formed via the cytosolic MVA path-
way in  L. erythrorhizon  cells (Li et al.  1998  ) .  

    11.3.2   Farnesyl Diphosphate 
Synthase 

 The sequential condensation of two molecules of 
IPP with one DMAPP molecule in a reaction 
catalyzed by farnesyl diphosphate synthase 
(FPPS) leads to the formation of FPP, the precur-
sor of sesquiterpenes (cf. McGarvey and Croteau 
 1995  ) . Genes encoding FPPS, a homodimeric 
enzyme, have been isolated and characterized 
from various plant species, and it has been shown 
that some plants contain at least two genes encod-
ing different FPPS isoforms (Delourme et al. 
 1994 ; Attucci et al.  1995 ; Adiwilaga and Kush 
 1996 ; Cunillera et al.  1996 ; Li and Larkins  1996 ; 
Matsushita et al.  1996 ; Pan et al.  1996 ; Hemmerlin 
et al.  2003b  ) . Two FPPS genes,  FPS1  and  FPS2,  
were identi fi ed in  Arabidopsis  (Cunillera et al. 
 1996 ; Cunillera et al.  1997  ) .  FPS1  alone produces 
two different isoforms of the enzyme, FPPS1S 
and FPPS1L, derived from two  FPS1  transcripts 
with alternative transcription start sites. The cor-
responding FPPS1L protein contains an addi-
tional 41 aa at its N-terminus, missing in a shorter 
FPPS1S version, which target this isoform into 
the mitochondria (Fig.  11.1 ), where it provides 
FPP for the mitochondrial isoprenoid compounds 
such as ubiquinone (Campbell et al.  1997  ) . In 
contrast, FPPS1S and FPPS2 are localized in the 
cytosol (Fig.  11.1 ) with FPPS1S providing FPP 
for general plant cell functions and FPPS2 being 
involved in the isoprenoid synthesis for more 
specialized functions (Cunillera et al.  2000  ) . In 
addition to the above-mentioned subcellular 
localizations of FPPSs, immunocytochemical 
studies suggested that FPPS is localized in the 
chloroplasts of rice mesophyll cells (Sanmiya 
et al.  1999  ) . Immunoblot analysis of subcellular 
fractions as well as trypsin-treated chloroplasts 
also detected FPPS in chloroplasts of tobacco 
and wheat leaves (Sanmiya et al.  1999  ) . However, 

the reaction of those antibodies exclusively with 
FPPS, and not with other prenyltransferases, 
needs to be con fi rmed. 

 All plant FPPSs characterized to date catalyze 
the head-to-tail condensation of one DMAPP 
molecule and two IPP molecules in the trans ( E ) 
con fi guration; however, an FPP synthase (zFPPS) 
recently identi fi ed from the wild tomato  Solanum 
habrochaites  was shown to catalyze the 
condensation of IPP and DMAPP in the  cis  ( Z ) 
con fi guration resulting in  Z , Z -FPP (Sallaud et al. 
 2009 ; Tissier et al.  2013 , this volume). This 
enzyme carries a 45-aa N-terminal transit peptide 
which mediates the transport of a fused GFP into 
chloroplasts, suggesting that zFPPS is localized 
in plastids and uses IPP and DMAPP provided by 
the plastidic MEP pathway.   

    11.4   Compartmentalization 
of Mono- and Sesquiterpene 
Biosynthesis 

 Following the formation of prenyl diphosphate 
precursors, low-molecular-weight terpene metab-
olites are formed by the action of a large family of 
enzymes known as terpene synthases (TPS) (cf. 
Cane  1999 ; Wise and Croteau  1999 ; Nagegowda 
 2010 ; Chen et al.  2011  ) . The large diversity of 
TPSs seems to have originated from repeated 
duplications and subsequent divergence of an 
ancestral TPS involved in primary metabolism 
(Bohlmann et al.  1998b ; Trapp and Croteau  2001  ) . 
One of the most outstanding properties of TPSs is 
their proclivity for making multiple products from 
a single prenyl diphosphate substrate (Tholl 
 2006  ) . These enzymes can be classi fi ed into three 
functional classes, monoterpene synthases, ses-
quiterpene synthases, and diterpene synthases, 
the  fi rst two being the subject of our discussion. 

    11.4.1   Monoterpene Synthases 

 The biosynthesis of monoterpenes, C10 com-
pounds, is catalyzed by specialized monoterpene 
synthases, which utilize GPP as a substrate. In 
the last decade, a number of monoterpene 
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synthases have been isolated and characterized 
from various plant species (see for references: 
Nagegowda and Dudareva  2007 ; Dudareva and 
Pichersky  2008 ; Nagegowda  2010  ) . Many of the 
monoterpene synthases catalyze the formation of 
a single product; however, several multiproduct 
monoterpene synthases have also been identi fi ed. 
For example,  Arabidopsis  myrcene/ocimene syn-
thase converts GPP into myrcene,  (E) - b -ocimene 
and small amounts of cyclic monoterpenes 
(Bohlmann et al.  2000  ) , while LtMTS2, a 
monoterpene synthase from tomato ( Solanum 
lycopersicum ), produces  b -phellandrene, 
 b -myrcene, and sabinene from GPP (van Schie 
et al.  2007b  ) . Another tomato monoterpene syn-
thase, phellandrene synthase (PHS1), is unique in 
its use of neryl diphosphate (NPP) as preferred 
substrate to form primarily  b -phellandrene as 
well as other monoterpenes,  d -2-carene, 
 a -phellandrene, and limonene. It can also use 
GPP to form myrcene, ocimene, and linalool 
(Schilmiller et al.  2009  ) . To date, it is believed 
that monoterpene biosynthesis takes place in 
plastids. Indeed, all isolated monoterpene syn-
thases have a typical transit peptide at their 
N-terminus responsible for chloroplast targeting 
and therefore are 50–70 aa longer than sesquiter-
pene synthases (Bohlmann et al.  1998b ; Williams 
et al.  1998  ) . Despite the large number of isolated 
monoterpene synthases, their subcellular local-
ization was investigated for only a few enzymes, 
among which (4 S )-limonene synthase (LS) repre-
sents the most widely studied. Immunogold 
labeling studies using antibodies generated 
against LS combined with in vitro protein import 
experiments with isolated pea chloroplasts pro-
vided direct evidence that LS is localized to the 
leucoplasts of the secretory cells of peppermint 
( Mentha  x  piperita ) oil glands (Turner et al. 
 1999  ) . LS was also found in plastids of 
 Arabidopsis , tobacco, and  Citrofortunella mitis  
by in situ localization studies with antibodies 
generated against LS (Bouvier et al.  2000 ; Ohara 
et al.  2003  ) . Moreover, GFP localization experi-
ments showed that the N-terminal part of a lemon 
LS synthase directs the GFP protein to tobacco 
plastids (Aharoni et al.  2004  ) . In contrast to the 
general agreement that all monoterpenes are 
synthesized in plastids, recent reports indicate 

that monoterpene biosynthesis might occur in the 
cytosol (Aharoni et al.  2004  )  or can have a dual, 
plastidic and mitochondrial, localization (Aharoni 
et al.  2004 ; Lee and Chappell  2008  ) .  

    11.4.2   Sesquiterpene Synthases 

 Sesquiterpene synthases are responsible for the 
biosynthesis of C15 sesquiterpenoid compounds 
from FPP. Several sesquiterpene synthases have 
been cloned and biochemically characterized 
from various plant species and are believed to be 
located in the cytosol, consistent with the sesqui-
terpene biosynthesis in this cellular compartment 
(Chappell  1995 ; Bohlmann et al.  1998a  ) . As in 
the case of monoterpene synthases, only a few 
studies were devoted to the subcellular localiza-
tion of sesquiterpene synthases. In vitro protein 
import experiments with two putative  Medicago 
truncatula  sesquiterpene synthases, MtTps1 and 
MtTps2, demonstrated that these two proteins 
were not imported into the isolated chloroplasts, 
suggesting their cytosolic localization (Gomez 
et al.  2005  ) . Recently, it was also shown in GFP 
fusion experiments that two sesquiterpene syn-
thases, (+)-germacrene D synthase and ( E,E )- a -
farnesene synthase, responsible for the volatile 
pro fi le of kiwifruit ( Actinidia deliciosa )  fl owers 
are localized in the cytoplasm (Nieuwenhuizen 
et al.  2009  ) . 

 Although sesquiterpene synthases are expected 
to be cytosolically localized, the presence of a 
putative plastid targeting sequence at the 
N-terminus, similar to monoterpene synthases, 
was recently reported for some sesquiterpene 
synthases.  Pinus sylvestris  PsTPS2, responsible 
for the formation of 1(10),5-germacradiene-4-ol 
and other products with a germacrene skeleton, 
contains a putative N-terminal transit peptide of 
37 aa in size  ( Köpke et al.  2008  ) . However, to 
date, there is no experimental evidence for its 
plastidic localization. Also, an atypical terpene 
synthase, santalene and bergamotene synthase 
(SBS), was isolated from the wild tomato 
 Solanum habrochaites  that is responsible for the 
synthesis of type II sesquiterpenes from  Z , Z -FPP 
(Sallaud et al.  2009  ) . Like the zFPPS described 
earlier, the SBS contains an N-terminal transit 
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peptide that mediates transport of a fused GFP 
into the plastids.   

    11.5   Bifunctional Terpene Synthases 
Involved in Mono- and 
Sesquiterpene Synthesis 

 It is generally accepted that GPP and FPP, the 
precursors for monoterpenes and sesquiterpenes, 
respectively, are compartmentally separated and 
that monoterpene biosynthesis takes place in 
plastids, where GPP is synthesized, whereas ses-
quiterpene formation occurs in the cytosol, where 
FPP is formed (Aharoni et al.  2005  ) . However, it 
has been well documented that sesquiterpene 
synthases from various plant species are able to 
accept both GPP and FPP (Pechous and Whitaker 
 2004 ; Tholl et al.  2005 ; Green et al.  2007  ) , with 
sesquiterpene synthase activities signi fi cantly 
exceeding their monoterpene synthase activities. 
Recently, bifunctional enzymes capable of 
ef fi cient formation of both monoterpenes and 
sesquiterpenes depending on substrate availabil-
ity were discovered. It has been shown that such 
bifunctional enzymes could be directed to differ-
ent subcellular compartments, thus extending the 
range of available substrates for enzyme utiliza-
tion and increasing the diversity of the metabo-
lites produced. We have recently isolated two 
nerolidol/linalool synthases (AmNES/LIS-1/-2) 
from snapdragon ( A. majus ) (Nagegowda et al. 
 2008  ) . Further examples include two nerolidol 
synthase genes,  FaNES1  and  FaNES2,  from 
strawberry ( Fragaria ananassa ) (Aharoni et al. 
 2004  )  and  terpene synthase 1  from maize ( Zea 
mays ) (Schnee et al.  2002  ) . 

 In snapdragon, AmNES/LIS-1 and AmNES/
LIS-2 enzymes share 95% identity and are both 
capable of producing linalool and nerolidol from 
GPP and FPP, respectively, with very similar cata-
lytic ef fi ciencies (Nagegowda et al.  2008  ) . 
However, AmNES/LIS-1 is localized in the cytosol 
and is responsible for nerolidol biosynthesis, 
whereas AmNES/LIS-2 has a 30 aa transit peptide 
in its N-terminus and was shown to be located in 
plastids and accounts for linalool formation. The 
presence of both monoterpene/sesquiterpene syn-
thase activities in plastids was further con fi rmed 

using puri fi ed leucoplasts, which produced neroli-
dol from FPP and linalool from GPP (Nagegowda 
et al.  2008  ) . The coexistence of AmNES/LIS-1 
and AmNES/LIS-2 enzymes with dual monoter-
pene/sesquiterpene activities in the cytoplasm and 
leucoplasts does not rule out that minute quantities 
of linalool and nerolidol can be made in the cyto-
sol and plastids, respectively, as a result of the pos-
sible presence of GPP and FPP in trace amounts in 
the corresponding cellular compartments. 
However, feeding of cut snapdragon  fl owers with 
exogenously supplied [ 2 H 

2
 ] mevalolactone 

ef fi ciently labeled nerolidol and showed no detect-
able incorporation into linalool (Dudareva et al. 
 2005  ) , suggesting that if a GPP pool exists in the 
cytosol, it is small and does not contribute 
signi fi cantly to linalool formation. 

 Similar to snapdragon, the cultivated straw-
berry  Fragaria ananassa  contains two nerolidol 
synthases, FaNES1 and FaNES2, which 
ef fi ciently convert GPP and FPP into the monot-
erpene and sesquiterpene alcohols linalool and 
nerolidol, respectively (Aharoni et al.  2004  ) . As 
in snapdragon, one of the two enzymes, FaNES1, 
is localized in the cytosol and the other, FaNES2, 
has an N-terminal extension, which can target 
GFP to mitochondria and plastids upon transient 
expression in tobacco protoplasts. In contrast to 
snapdragon  fl owers, only one of these two genes, 
 FaNES1  encoding the cytosolic enzyme, is highly 
expressed in ripe strawberry, while  FaNES2  
expression was barely detectable. This observa-
tion implies that both linalool and nerolidol in 
strawberry fruits are exclusively formed by 
FaNES1 in the cytosol and that suf fi cient levels 
of both substrates exist in the cytoplasm to sup-
port the biosynthesis of roughly similar quanti-
ties of linalool and nerolidol produced by fruits 
(Aharoni et al.  2004  ) . Although FaNES1 might 
be involved in the synthesis of linalool in the 
cytosol due to its dual enzymatic activity, these 
data do not exclude the simultaneous presence of 
a yet unknown linalool synthase localized in 
plastids and being predominantly responsible for 
linalool synthesis in strawberry fruits. 

 Bifunctional terpene synthases like those found 
in the dicotyledons snapdragon (Nagegowda 
et al.  2008  )  and strawberry (Aharoni et al.  2004  )  
have also been identi fi ed in monocotyledons. 
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The TPS1 enzyme, encoded by the maize  terpene 
synthase 1  gene, is capable of producing ( E )-
nerolidol, ( E )- b -farnesene, and ( E , E )-farnesol 
from FPP, as well as linalool from GPP  in vitro  
(Schnee et al.  2002  ) . After herbivore damage of 
maize plants,  tps1  expression was increased by 
almost eightfold leading to the emission of a vol-
atile blend with ( E )- b -farnesene, linalool, and 
the ( E )-nerolidol metabolite (3 E )-4,8-dimethyl-
1,3,7-nonatriene (DMNT) as the prominent com-
pounds. Initially, no transit peptide was detected 
in the TPS1 protein, suggesting its cytosolic 
localization and involvement in sesquiterpene 
formation (Schnee et al.  2002  ) . However, more 
recent bioinformatic analysis of TPS1 using 
various algorithms predicted its plastidic target-
ing (Nagegowda et al.  2008  ) . Thus, compartmen-
talization of TPS1 remains to be determined 
experimentally, which should show the sites of 
linalool, ( E )- b -farnesene, and DMNT biosynthe-
sis within the cells, as well as the contribution of 
TPS1 to their formation.  

    11.6   Metabolic Engineering of 
Mono- and Sesquiterpene 
Synthesis Reveals Small GPP 
and FPP Pools in Cytosol and 
Plastids, Respectively 

 In the case of bifunctional enzymes localized in 
one subcellular compartment, the level of 
available substrates will play a crucial role in 
determining the type and relative amounts 
(monoterpenes versus sesquiterpenes) of prod-
ucts formed. To date, little is known about the 
endogenous pools of GPP and FPP in different 
subcellular compartments including the cytosol 
and plastids. However, recent metabolic engi-
neering of the terpenoid spectrum (cf. Dudareva 
and Pichersky  2008  )  has greatly contributed to 
the evaluation of precursor pool sizes in different 
compartments of plant cells. When N-terminally 
truncated monoterpene synthases, limonene 
synthases from  Perilla frutescens  and  Citrus 
limon  ,  were ectopically expressed in tobacco, 
transgenic plants produced low but measurable 
levels of limonene, indicating the presence of a 

small GPP pool in the cytosol (Ohara et al.  2003 ; 
Wu et al.  2006  ) . Similarly, the overexpression of 
basil sesquiterpene synthase,  a -zingiberene syn-
thase (ZIS) (which can also utilize GPP and pro-
duce a number of monoterpenes in vitro), in 
tomato fruits under the control of a fruit ripening-
speci fi c promoter led to the accumulation of a 
number of monoterpenes including  a -thujene, 
 a -pinene,  b -phellandrene, and  g -terpinene in 
addition to expected high levels of  a -zingiberene 
and several other sesquiterpenes (Davidovich-
Rikanati et al.  2008  ) , indicating that a small pool 
of GPP is available in the cytosol of tomato fruits 
as well. On the other hand, the direction of 
patchoulol synthase (PTS), a sesquiterpene syn-
thase from  Pogostemon cablin , to the plastids of 
transgenic tobacco using an N-terminal transit 
peptide of the RubisCO small subunit yielded 
plants that accumulated low levels of patchoulol 
and several other sesquiterpenes, showing the 
presence of a small FPP pool in tobacco plastids 
(Wu et al.  2006  ) . These results were consistent 
with the previously reported detection of FPPS in 
tobacco chloroplasts (Sanmiya et al.  1999  )  

 In many cases, FPP, which is expected to be 
produced in relatively large amounts in the cyto-
sol, needed for sterol biosynthesis, is not readily 
available for catalysis by introduced sesquiter-
pene synthases (Aharoni et al.  2005  ) . Only very 
low levels of the respective sesquiterpenes were 
obtained in  Arabidopsis  plants overexpressing a 
chicory germacrene A synthase (Aharoni et al. 
 2003  )  and in tobacco plants expressing the amor-
pha-4,11-diene synthase from  Artemisia annua  
or a fungal trichodiene synthase (Hohn and 
Ohlrogge  1991 ; Wallaart et al.  2001  ) . To date, the 
constitutive overexpression of the cytosolically 
localized maize TPS10 and PTS in  Arabidopsis  
and tobacco, respectively, represent the two most 
successful attempts at producing high levels of 
volatile sesquiterpenes by enzymes targeted to 
the cytosol (Schnee et al.  2006 ; Wu et al.  2006  ) , 
suggesting a suf fi cient supply of FPP for cytoso-
lic sesquiterpene synthesis in these cases. 

 The ectopic expression of bifunctional terpene 
synthases in transgenic plants is of particular 
interest since these enzymes can ef fi ciently use 
both GPP and FPP substrates and may allow for 
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the estimation of the relative ratio of these two 
substrate pools in a distinct subcellular compart-
ment. Recently, cytosolically localized bifunc-
tional linalool/nerolidol synthase FaNES1 from 
strawberry was targeted to  Arabidopsis  and 
potato plastids (Aharoni et al.  2003 ; Aharoni 
et al.  2006  )  as well as to  Arabidopsis  mitochon-
dria (Kappers et al.  2005  )  by the addition of the 
respective targeting signals. Both transgenic 
 Arabidopsis  and potato plants expressing the 
plastid-targeted version of FaNES1 produced 
high levels of linalool and its glycosylated and 
hydroxylated derivatives (Aharoni et al.  2003 ; 
Aharoni et al.  2006  ) . Surprisingly, these 
 Arabidopsis  plants also produced some nerolidol, 
although at levels 100- to 300-fold lower than 
those of linalool, thus once again suggesting that 
a small pool of FPP is present in plastids (Aharoni 
et al.  2003  ) . Targeting of FaNES1 to mitochon-
dria resulted in transgenic  Arabidopsis  plants 
emitting nerolidol at levels that were 20- to 
30-fold higher than those from transgenic plants 
with the plastid-targeted FaNES1 in addition to 
the nerolidol derivative ( E )-DMNT (Kappers 
et al.  2005  ) . Thus, these results show that plant 
mitochondria indeed have a readily available FPP 
pool, which is generated by the mitochondria-
localized FPPS isoform (Cunillera et al.  1997  )  or 
alternatively imported from the cytosol (Hartmann 
and Bach  2001  )  and is normally used for ubiqui-
none biosynthesis. Overall, the above-described 
metabolic engineering studies suggest the pres-
ence of substrates for mono- and sesquiterpene 
biosynthesis in both plastids and cytosol, although 
at different levels: high GPP/trace FPP in plastids 
versus high FPP/trace GPP in cytosol. These sub-
strate pools allow endogenous (bifunctional) 
enzymes to produce their respective products in 
both subcellular compartments, however, at a 
level representative of that of the precursors.  

    11.7   Summary and Future 
Perspectives 

 The past decade has witnessed signi fi cant 
progress in the identi fi cation of genes and 
enzymes involved in terpenoid biosynthesis in 

plants. However, to date, only limited knowledge 
exists about the subcellular localization of 
enzymes involved in the terpenoid network and 
the contribution of different cellular compart-
ments to terpenoid formation. While only plas-
tids are believed to be involved in IPP and 
DMAPP biosynthesis via the MEP pathway, at 
least four different compartments, cytosol, per-
oxisomes, ER, and spherical vesicular structures, 
contribute to the formation of IPP and DAMPP 
via the MVA pathway (Fig.  11.1 ). Further analy-
sis of subcellular localization of the enzymes 
involved in the MVA pathway and in reactions 
downstream of IPP will provide new insights on 
the role of compartmentalization in the regula-
tion of the  fl ux toward terpenoid precursors and 
allow us to understand the FPP allocation for ste-
rol and sesquiterpene biosynthesis. Given the 
involvement of various subcellular compartments 
in the biosynthesis of terpenoid precursors, it 
seems obvious that numerous transport processes 
across the organellar membranes are required 
(Fig.  11.1 ). This might include the transport of 
intermediates of the MVA pathway between the 
cytosol and peroxisomes, IPP as well as other up- 
and downstream metabolites between plastids 
and cytosol, and IPP from the cytosol to mito-
chondria. However, to date, very little is known 
about these transport processes, the transporters 
involved, and their substrate speci fi cities. 

 The existence of small pools of GPP and FPP 
in the cytosol and plastids, respectively, also 
raises the question about their origin. They might 
originate from incomplete reactions catalyzed by 
the cytosolic FPPS and the plastidic GGPPS, 
releasing small quantities of the reaction interme-
diates GPP and FPP, respectively (Fig.  11.1 ). 
Alternatively, they can be the products of 
cytosolic GPPS and plastidic FPPS, which have 
been identi fi ed in limited plant species. Future 
functional genomic, transcriptomic, and pro-
teomic analysis will show whether one of these 
two scenarios is prevalent in the plant kingdom. 
Moreover, such analysis will also lead to the 
identi fi cation of putative transporters involved in 
the transport of terpenoid precursors across 
the organellar membranes described above. 
Knowledge about the endogenous pools of GPP 
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and FPP in different subcellular compartments 
will be even more crucial for rational metabolic 
engineering in the light of the ability of many 
sesquiterpene synthases as well as bifunctional 
terpene synthases to produce both mono- and 
sesquiterpene compounds. This knowledge will 
provide a foundation for future successful meta-
bolic engineering of plant terpenoid pro fi les to 
boost plant defense, increase pollinator attrac-
tion, and heighten the production of biologically 
valuable compounds (Aharoni et al.  2005,   2006 ; 
Dudareva and Pichersky  2008  ) .      
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